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Abstract

The majority of literature on robust control assumes
that a design model is available and that the uncertainty
model bounds the actual variations about the nominal
model. However, methods for generating accurate
design models have not received as much attention in
the literature. The influence of the level of accuracy of
the uncertainty model on closed loop performance has
received even less attention. The research reported
herein is an initial step in applying and extending the
concept of model validation to the problem of
obtaining practical uncertainty models for robust
control analysis and design applications. An extension
of model validation called 'sequential validation' is
presented and applied to a simple spring–mass–damper
system to establish the feasibility of the approach and
demonstrate the benefits of the new developments.

Introduction

Robust control theory guarantees that a feedback
control system can be designed that will maintain
desired levels of stability and performance subject to
modeling errors and uncertainties.[1,2] There is,
however, an underlying assumption that the
uncertainty model used in the design effectively
characterizes the differences between the responses of
the true system and the nominal design model. This
means that the family of responses associated with the
design model contain the responses of the true system.

It is impossible to conclusively prove that this
assumption is satisfied for any real system. However,
if there is sufficient knowledge of the response
characteristics of the true system then a model can be
generated that, subject to the available knowledge,
characterizes the possible range of responses that can
be produced by the system. The goal is to
systematically generate such  a  model  with  the  added
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property that it be accomplished with minimal
conservatism. That is, the model should characterize
responses of the real  system that are possible but
should not characterize responses that are not
possible. Of course, it is impossible to conclusively
prove this as well. However, if the available
knowledge is comprehensive enough it is possible to
achieve this goal within some qualitative level of
confidence.

     Model Validation

A concept called "model validation" has recently
been developed to attack this problem.[3–8]  The idea
behind model validation is that given input and output
data for a system that is otherwise unknown, a model
can be generated that driven by the same input (and
possibly some additional inputs) can exactly reproduce
the output of the true system. The frequency domain
version of this statement is depicted in block diagram
form in Figure 1.

The input to the true system u(s)  produces the
output of the true system y(s) . The same input drives
the model along with an external disturbance w(s) .
Another external input v(s)  is added to the response of
the model to produce the validation output ˜ y (s) . The

external inputs are included because the true system
output includes artifacts of the method(s) by which it
is obtained including external disturbances, estimation
errors, and quantization effects. The external inputs
provide a mechanism to account for these effects.
Validation is achieved by choosing the model and the
external inputs w(s)  and v(s)  so that the difference
between the validation output and the true system
output e(s)  is identically zero for the available
input/output data. (The Laplace variable s  will be
omitted henceforth for ease of discussion.)
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Figure 1 – Model validation block diagram.
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The goal is to choose the validating model and
external  inputs in such a way that the  resulting model
can be used for robust control design. There are
infinitely many ways to choose a validating model and
so the next step is to develop a means for generating a
validating model that can be used in robust control
design and demonstrate reduced levels of conservatism.

    Robust Control Models

Robust control design requires a linear design model
that characterizes parameter variations, unmodeled
dynamics, and/or other uncertainties relative to a
nominal model. The common format for describing
such a model in block diagram form is shown in
Figure 2. [1,2] The nominal model is represented by the
(2,2) element of the transfer matrix P  while the other
elements represent various aspects of the uncertainty.
The matrices Ω  and ∆B  characterize the structure of

the uncertainty in the model; Ω  is a real diagonal
positive definite weighting matrix and ∆B  is a block

diagonal matrix with unity norm (a so-called unit ball).
The elements of ∆B  are only specified as to whether

they are real or complex valued, satisfy a particular
block diagonal structure, and satisfy the norm bound
condition.

For a given set of inputs u , v, and w, the output of
the uncertain model ˜ y  represents a family of outputs
determined by all possible choices for ∆B  that satisfy

the prescribed structure. One measure of conservatism
for the uncertain model described above is the size of
the external inputs v, w and the norm of uncertainty
weighting matrix Ω . A reasonable goal would be to
generate a validating model that minimizes these
quantities.

The model validation problem can be broken down
into several sub-problems. First input/output data from
the true system must be obtained. It may come from
experiment, actual operation, simulation, or computed
directly from a high-fidelity model that is used to
represent the true system. The second sub-problem is
choosing a structure for the model. Robust control
design relies on a linear model called a linear fractional
transformation (LFT)[1,2] and is represented by the
block diagram in Figure 2. The equation for the LFT
in Figure 2 is

˜ y = P23 + P21∆BΩ I− P11∆BΩ[ ]−1P13
 
 

 
 

v

w
 
 
 

 
 
 

+ P22 + P21∆BΩ I − P11∆BΩ[ ]−1
P12

 
 

 
 u

. (1)

P11 P12 P13
P21 P22 P23

∆B

u(s)

v(s), w(s)

ξ(s)η(s)

Ω

y(s)~

Figure 2 – Robust control model block diagram.

Choosing the model structure involves selecting the
Pij , the block structure of Ω  and ∆B , and the external

inputs v and w. The Pij  arise from the form of the

nominal model and the representation of uncertainty
(e.g., real or complex valued parameter uncertainty,
additive uncertainty, input or output multiplicative
uncertainty in unstructured or structured forms).
Subsequently the form of Ω  and ∆B  are chosen

consistent with the uncertainty representations. The
third sub-problem is setting up an optimization
problem that solves for the smallest external inputs
and uncertainty weights that, subject to the choice of
model structure, makes the validation error e  (from
Figure 1) zero.

    Extending the Model Validation Method

The current formulation of the model validation
problem optimizes on a single scalar uncertainty
weight with a bound constraint on the magnitude of
the external inputs.[3] There may be other formulations
that may be better able to incorporate the available
knowledge. An alternate, more general, approach is
proposed and developed in this paper.

The choice for the structure of the uncertainty plays
a major role in the relative conservatism of the
resulting validating model. How does one choose the
uncertainty structure upon which the method operates
to get the "best" model? It may be possible to
parameterize the potential uncertainty model structures
and utilize optimization to select the best structure. An
approach to address this issue by means of sequential
uncertainty modeling is proposed and developed here as
well.

A brief review of the key technical aspects of the
model validation method will be presented first. This
will be followed by a discussion of the extensions that
have been made to the method as part of the current
research. This is followed by simple examples that
demonstrate the application of the model validation
method to generate an uncertainty model for a simple
dynamic system.
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The perspective on model validation and uncertainty
modeling addressed here is a direct extension of the
work of Lim and Giesy.[3] The model validation
problem statement and solution is theirs and the
current work builds on that foundation. It is
summarized and interpreted here to provide a basis for
the extensions described subsequently.

Model Validation Problem[3,4]

Assume that input/output data for a physical
dynamic system is available and that a robust control
design model for the system is desired. Assume further
that a linear model, specified uncertainty structure, and
a specified level of external disturbance is available for
the same system. The model elements can be described
as a linear fractional transformation (LFT) as shown in
Figure 2. The input data for the physical system can be
used as input to the LFT to produce another set of
output data. Model validation is achieved by selecting
certain elements of the LFT and its external inputs in
such as way as to make the difference between the
outputs of the physical system and LFT model exactly
zero at each frequency. Figure 1 depicts the model
validation problem in block diagram form. In equation
form model validation is simply

0 ≡ e= y − ˜ y =e y
0 −P23

v

w
 
 
 

 
 
 

−P21ξ (2)

where

ey
0 = y − P22u

Recall that the nominal linear model P22  and the

input data u  are given. Therefore the quantities

P23 vT wT{ }T
 

*
 and P21ξ  can be used to

characterize the differences (errors, uncertainties, etc.)
between the true system outputs and the model
outputs. Validation is achieved by solving Eqn. (2) for
these quantities subject to the specified structure of the
model.

The model structure is described by the LFT in
Eqn. (1). The specified uncertainty structure is
represented by Pij , i,j ≠ 2  and ∆B . The remaining free

variables are v and w and the uncertainty weights in
Ω . Note that Ω  has a diagonal structure dictated by the
structure of ∆B  which is block diagonal. There is one
free weight ωi  associated with each block of ∆B  as
shown in Eqn. (3) where the In ,n = 1,2,..., τ  are

identity matrices with dimension equal to the

                                                
*  Note that the superscript T  is used herein to denote
complex conjugate transpose.

dimension of the ∆Bi , i = 1,2,..., τ  and τ  is the

number of uncertainty blocks.

  

Ω =

ω1I1
ω2I2

O
ωτ Iτ

 

 

 
 
 
 

 

 

 
 
 
 

∆
B

=

∆B1
∆B2

O
∆B τ

 

 

 
 
 
 

 

 

 
 
 
 

(3)

Each ∆Bi  are unit norm matrices with specified

structure (diagonal or full, real or complex) but whose
elements are otherwise arbitrary. Therefore the free
variables that can be selected to achieve model
validation are v, w, ωi , and ∆Bi , i = 1,2,..., τ .

The current model validation problem formulation
combines v and w into a single vector. In addition, it
is assumed that these signals satisfy the Euclidean
norm† bound constraint

v

w
≤ 1. (4)

This comes from the notion that the external inputs
are associated with some random phenomena that are
unknown except that they are stable and bounded.

Model Validation Solution [3]

The solution of the model validation problem
described above is accomplished using a linear vector
space approach. The model validation equation,
Eqn. (2), can be rewritten

ey
0 = M

ξ
v

w

 
 
 

  

 
 
 

  
(5)

where M = P21 P23[ ]  and ey
0 , P21, and P23  are

known. A necessary condition for Eqn. (5) to be

satisfied is that ey
0  lie in the subspace spanned by the

columns of M , that is

ey
0 ∈Im(M) (6)

The general solution of Eqn. (5) can be written as

                                                
†  All norms referred to herein are Euclidean norms.
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ξ
v

w

 
 
 

  

 
 
 

  
= M+ey

0 + NMθ (7)

where

M+ =
MT MMT( ) −1

, coldim(M) > rowdim(M)

MT M( )−1
M T, col dim(M)< rowdim(M)

 

 
 

 
 

and where the columns of NM  form a basis for the

null space of M . Note that the vector θ  is arbitrary
because when it is premultiplied by NM  the product

lies in the null space of M  which when premultiplied
by M , as in Eqn. (5), is identically zero. However, θ

does contribute to the norm of ξT vT wT[ ]T . Also

recall that the vector formed by v and w has a norm
bound constraint. Therefore, θ  is arbitrary only to
the degree to which the norm bound is satisfied.

In order to assure that this constraint is satisfied
consider a partition of Eqn. (7)

v

w
 
 
 

 
 
 

= M+( )
vw

ey
0 + NM( )

vw
θ (8)

where the subscript vw represents taking the rows of
the respective matrix associated with v and w. Now
NM( )

vw
 can be represented in terms of its singular

value decomposition by

NM( )
vw

= U1 U2[ ] S1 0

0 0
 
  

 
  

V1
T

V2
T

 

 
 

 

 
 (9)

The columns of the matrices V1 and V2  span the

image and null spaces of NM( )
vw

, respectively.

Therefore, θ  can be written as the sum of two
vectors, one in the image of NM( )

vw
 and one in the

null space of NM( )
vw

,

θ = V1γ + V2ψ (10)

Note that because ψ  multiplies V2  which spans

the null space of NM( )
vw

 it does not contribute to the

norm of 
v

w
 
 
 

 
 
 

 and is therefore completely arbitrary.

However, γ  does contribute to the norm of 
v

w
 
 
 

 
 
 

 and

is therefore constrained. To determine the constraint on
γ  substitute the expression for θ  from Eqn. (10) and

the expression for NM( )
vw

 from Eqn. (9) into

Eqn. (8). The properties of the singular value
decomposition of NM( )

vw
 allow considerable

simplification and the elimination of ψ  from the

expression.

v

w
 
 
 

 
 
 

= M+( )
vw

ey
0 + U1S1γ (11)

Recall the norm bound on v and w from Eqn. (4)
and note that the matrix U1 U2[ ]  is unitary so that

the constraint in Eqn. (4) can be written

1≥
v

w

2
≡

U1
T

U2
T

 

 
 
 

 

 
 
 

v

w
 
 
 

 
 
 

2

. (12)

Premultiplying Eqn. (11) by U1 U2[ ]T ,

substituting it into Eqn. (12) and simplifying the
expression results in

U1
T M+( )

vw
ey

0 + S1γ
2

≤ 1− U2
T M+( )

vw
ey

0
2

(13)

This condition can only be satisfied when the right
hand side is non-negative which further implies that

U2
T M+( )

vw
ey

0
2

≤ 1 (14)

This condition and that imposed by Eqn. (6) are
required for the existence of a validating model. If these
conditions are not satisfied then the given nominal
model and uncertainty structure cannot validate the
input/output data. In such cases the nominal model
and/or uncertainty structure and/or the definition of the
external inputs must be modified.

Now define a variable φ  such that

φ = U1
T M+( )

vw
ey

0 + S1γ . (15)

The condition in Eqn. (13) then becomes a constraint
on φ  such that

φ 2 ≤ 1− U2
T M+( )

vw
ey

0
2

. (16)

Solving Eqn. (15) for γ  gives

γ = S1
−1 φ −U1

T M+( )
vw

ey
0 

  
 
  . (17)

There is an additional constraint on the selection of
φ  and ψ  associated with the structure of the
uncertainty described in Eqn. (3). Assume that φ  and
ψ  satisfy the necessary conditions for existence of a
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validating model. Eqn. (7) can then be written in terms
of φ  and ψ  as follows.

ξ
v

w

 
 
 

  

 
 
 

  
= M+ −NMV1S1

−1U1
T M+( )

vw

 
  

 
  ey

0

+ NMV1S1
−1 NMV2[ ] φ

ψ
 
 
 

 
 
 

(18)

Note, however, that the vector ξ  is not an external

input, it depends directly on the uncertainty structure
(see Figure 2) and needs to satisfy the following
relations.

ξ = ∆BΩη (19)

η= P11 P13[ ]
ξ
v

w

 
 
 

 
 
 

 
 
 

  

 
 
 

  
+ P12u (20)

Substituting Eqn. (18) into Eqn. (20) results in the
following equation.

η= P11 P13[ ] M+ − NMV1S1
−1U1

T M+( )
vw

 
  

 
  ey

0

+P12u+ P11 P13[ ] NMV1S1
−1 NMV2[ ] φ

ψ
 
 
 

 
 
 

(21)

Therefore, given φ  and ψ , the model validating

solution is computed by Eqns. (18) and (21) subject
to the further constraint that Eqn. (19) be satisfied.

Satisfying Eqn. (19) assures that the validating

inputs determined by φ  and ψ , u , and ey
0  also

generate η  and ξ  that satisfy the given uncertainty

structure. Once such a solution is determined an actual
uncertainty ∆B  that achieves validation for the given

input/output data and system model can be computed
using Eqn. (19). Note that this computation is not
required during the optimization used to compute φ
and ψ . In addition, the solution to this equation is

usually underspecified. That is, there are generally
many possible choices for the elements of ∆B  that

satisfy the equation. A method for computing an
optimal validating uncertainty will be presented
subsequently.

In summary, the Lim-Giesy solution of the model
validation problem boils down to (1) obtaining
input/output data for the true system, (2) selecting a
nominal linear model, a particular uncertainty
structure, and set of external inputs, (3) testing whether
the candidate model structure can generate a validating
set of inputs and uncertainties, and (4) choosing φ  and
ψ  such that the model is validating, the external

inputs are appropriately bounded, and the uncertainty
structure is not violated. The following sections will
build on this solution approach.

Optimization Problem
The largely arbitrary nature of φ  and ψ  suggest

that constrained optimization can be used to select
them subject to the necessary constraints and additional
user specified constraints and objectives. The necessary
constraints are the bound on φ  and the requirement

that the uncertainty structure be satisfied. Additional
constraints and objectives may be chosen to minimize
the magnitude of some or all of the external inputs,
minimize the magnitude of the uncertainties required to
achieve validation, or trade off the magnitude of
particular elements of the uncertainty structure.

The approach described in the literature[3] is to place
a scalar weighting factor ρ  on the uncertainty
weighting matrix Ω= ρΩ0  (with Ω0  specified) that
is minimized by selection of φ  and ψ . In this way,

the magnitude of the contribution of the uncertainty
model to the validating response is minimized. This
approach almost guarantees that the external inputs
will take on values such that the norm bound condition
in Eqn. (4) is active. This approach is fine if the
magnitude of the external disturbances are known or if
the uncertainty model is very simple (e.g., a single
block). However, this is not usually the case.

A more comprehensive approach is to optimize over
the weights on the uncertainty blocks ωi  with the

added objective of minimizing the magnitude of some
or all of the elements of the external inputs v and w.
The cost function may be defined so as to seek the
smallest possible norm of the uncertainty weight
matrix Ω  and of φ  (which is essentially equivalent to

minimizing the norm of the external inputs v and w) .
This is the approach that has been implemented in the
current research.

In more precise terms, assuming that none of the
uncertainty blocks are associated with repeated scalar
uncertainties, the problem statement is as follows. At
each frequency for which input–output data is available

  

min

φ,ψ, ωi

ω1
M

ωτ Q1

2

+ φ Q2

2

 

 

 
 
 
 

 

 

 
 
 
 

(22)

subject to the constraints

ωi ≥
ξi
ηi

,      i = 1,2,3,K,τ (23a)

φ ≤ 1− U2
T M+( )

vw
ey

0
2

(23b)
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where Q1 and Q2  are diagonal semi-definite

weighting matrices and ⋅( ) Q  is the norm of the

vector ⋅( )  with respect to the weighting matrix Q .

At each frequency the objective function seeks to
minimize, in a normed sense, the contributions of the
various blocks of the uncertainty model while
simultaneously minimizing, again in a normed sense,
the size of the external inputs subject to two sets of
constraints. The first constraint Eqn. (23a) insures that
the validating inputs ξ , v and w are consistent with

the structure of the uncertainty model determined by
the ωi  and∆Bi  in Eqn. (3). That is, there exists an

admissible uncertainty satisfying the norm bounds and
block diagonal structure imposed by the uncertainty
model. The second constraint Eqn. (23b) insures that
the validating external inputs satisfy the bound
condition from Eqn. (4).

If the uncertainty model further specifies that the
structure of some of the uncertainty blocks represent
repeated scalars such that

∆Bi = δiIni (24)

where In i  is the identity matrix of order ni , then

additional constraints must be imposed. The
additional constraints are equality constraints and can
be written

ξi =ω i δiηi (25)

for those blocks that represent repeated scalar
uncertainties where ξi  and ηi  are vectors
corresponding to the ith uncertainty block ∆Bi . The

scalar δi  can be real or complex valued depending on

the uncertainty description but are always norm
bounded by unity consistent with the definition of
∆B .

Sequential Model Validation

A further extension of the model validation approach
is possible if elements of the uncertainty model is
specified (i.e., one or more blocks of ∆B ). The effect

of the specified elements on the model validating
solution can be identified and eliminated from the
solution of the remaining validating signals. This is
done using an image space–null space decomposition
similar to that used in the derivation of the model
validation solution. [3]

Consider the situation in which the uncertainty
structure is partitioned into two parts, one of which is
assumed to be known a priori, Ωk∆Bk , and one that

is to be determined, Ωu∆Bu . The constraint in

Eqn. (19) can be written as two constraints on the

elements of ξ  and η  associated with the two

uncertainty model components, the first known and the
second unknown.

ξk = ∆Bk Ωk ηk =∆ k ηk (26)

ξu = ∆Bu Ωu ηu =∆u ηu (27)

The fact that Ωk∆Bk  is specified influences the

possible choices for φ  and ψ  to achieve validation.

Consider the partitions of Eqns. (18) and (21)
corresponding to the known uncertainty block. These
can be written in terms of a linear equation in φ  and
ψ .

ξk = ξk
0 +Rk

φ
ψ

 
 
 

 
 
 

ηk = ηk
0 + Tk

φ
ψ

 
 
 

 
 
 

(28)

where

ξk
0 = M+( )

k
− NM( )kV1S1

−1U1
T M+( )

vw

 
  

 
  ey

0

ηk
0 = P12( )ku + P11( )k P13( )k[ ]×

M+ −NMV1S1
−1U1

T M+( )
vw

 
  

 
  ey

0

and where

Rk = NM( )k V1S1
−1 V2[ ]

Tk = P11( )k P13( )k[ ]NM V1S1
−1 V2[ ]

.

The notation ⋅( ) k  represents the rows of ⋅( )
corresponding to the known uncertainty block and its
inputs ηk  and outputs ξk .

Substituting Eqn. (28) into the constraint in
Eqn. (26) and solving for φ  and ψ  results in the

following expression.

φ
ψ

 
 
 

 
 
 

= Xk
+ ξk

0 − ∆kηk
0( ) (29)

where
Xk = ∆kTk −Rk

Xk
+ =

Xk
T Xk Xk

T( )−1
, coldim(Xk) > row dim(Xk )

Xk
TXk( ) −1

Xk
T , coldim(Xk )<row dim(X k)

 

 
 

 
 

The right hand side of Eqn. (29) can be also written
in terms of two components, one that lies in the image
of Xk  and one that lies in the null space of Xk . The
singular value decomposition of Xk  provides a means
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by which bases for these components can be
determined.

Xk = UX1 UX2[ ] SX1
0

0 0
 
  

 
  

VX1
T

VX2
T

 

 
 
 

 

 
 
 

(30)

The columns of the matrices VX1  and VX2  span the

image and null spaces of Xk , respectively. Therefore,
an expression for φ  and ψ  can be written

φ
ψ

 
 
 

 
 
 

= VX1α+ VX2 β (31)

It is readily shown that substituting Eqn. (31) into
Eqn. (29) simplifies to the following.

α = SX1
−1 T

UX1 ξk
0 −∆kηk

0( ) (32)

Note that the solution is independent of β . Also note

that substituting Eqn. (32) into Eqn. (31) results in
the following expression for φ  and ψ  in terms of β .

φ
ψ

 
 
 

 
 
 

= Xk
+ ξk

0 − ∆kηk
0( ) +VX2β  (33)

As a result, the constraint in Eqn. (26) is satisfied
by Eqn. (33) and β  can be chosen to satisfy the

remaining model validation relations and constraints.
This is accomplished by substituting Eqn. (33) into
the partitions of Eqns. (18) and (21) associated with the
uncertainty block(s) remaining to be determined. The
new model validation problem becomes finding a
solution for β  that satisfies the combination of the

following equations and the constraint in Eqn. (27).

ξu
v

w

 
 
 

  

 
 
 

  
= M +( )

uvw
− NM( )uvw V1S1

−1U1
T M+( )

vw

 
  

 
  ey

0

+ NM( )uvw V1S1
−1 V2[ ]Xk

+ ξk
0 −∆ kηk

0( )
+ NM( )uvw

V1S1
−1 V2[ ]VX2

β

(34)

ηu = P12( ) uvwu

+ P11( )uvw P13( )uvw[ ] M+ − NM V1S1
−1U1

T M+( )vw

 
  

 
  ey

0

+ P11( )uvw P13( )uvw[ ]NM V1S1
−1 V2[ ]Xk

+ ξk
0 −∆ kηk

0( )
+ P11( )uvw P13( )uvw[ ]NM V1S1

−1 V2[ ]VX 2
β

(35)

Notice that the form of the expressions in Eqns.
(34) and (35) is very similar to those in Eqns. (18) and
(21). Each expression is the sum of a constant term
and a term multiplying an unknown vector (φ  and ψ
in the earlier case and β  in this case). As a result, the

same computing machinery used to solve the original
model validation formulation can be used.

This new result provides a means for several
variations of model validation that can be used in the
solution of practical issues in uncertainty modeling.
For example, the selection of the appropriate level of
parameter uncertainty can be chosen by comparing (or
optimizing) the level of additional uncertainty needed
to achieve validation. This concept is developed further
in the example section.

Minimum Norm Validating Uncertainty

The model validation based uncertainty modeling
method provides uncertainty weights. It is useful to be
able to compute an actual validating uncertainty (i.e.,
Ω  and ∆B ) that has the same weights.

There are basically two types of validating
uncertainty models to consider – one associated with
repeated scalar blocks and one associated with full
complex blocks. Both types result from the solution of
the constraints in Eqn. (19) for a specific Ω∆B  given

an input–output pair and validating uncertainty
weights. Recall that the validating uncertainty model is
determined by solving for φ  and ψ . The values of η
and ξ  can then be computed using Eqns. (18) and (20)

and used to solve Eqn. (19).
Solving for a validating uncertainty associated with

a repeated scalar block is trivial because the number of
unknowns is the same as the number of equations, as
is evident in Eqn. (25).

The solution of a validating uncertainty for a full
complex block is more complicated because there are
typically more unknowns than equations. One way to
obtain a solution for a full complex block is via
optimization. A family of validating uncertainties can
be parameterized and these parameters can be optimized
to satisfy Eqn. (19) and match the desired uncertainty
weight.

Consider a set of candidate validating uncertainty
blocks

  
∆i = 0 L δi L 0[ ] , i = 1,2,K,n (36)

where

  

δi =
δ1i
M

δni

 
 
 

  

 
 
 

  
(37)

Substituting each block into Eqn. (19) simplifies to

the following expression for the δi .

  
δi = ξ

ηi
, i = 1,2,K,n (38)
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The sum of all the candidate solutions ∆i  scaled by
constant factors ki  results in the following equation.

  

ξ =
1

ki
i= 1

n
∑

k1 δ1{ } L kn δn{ } 
 

 
 η (39)

Equation (39) describes a family of validating
uncertainty blocks for arbitrary choices of the ki .

A minimum norm validating uncertainty can be
obtained by choosing the ki  to minimize the difference

between the specified uncertainty weight ω  and the
norm of the uncertainty matrix described in Eqn. (39),
or equivalently

min
˜ k i

ω− ˜ ∆   subject to ˜ k i
i=1

n
∑ = 1 (40)

where

˜ ∆ = ˜ k i∆
i

i=1

n
∑ (41)

˜ ∆  is a minimum norm validating uncertainty.

Examples

Two examples will be presented to (1) demonstrate
the result of optimizing the weighting for each block
within a specified uncertainty structure, and (2)
demonstrate the application of sequential model
validation when part of the uncertainty model is known
or otherwise specified.

    System Model   [3,5]

Consider the simple physical system depicted in
Figure 3. Two masses are connected to ground and each
other via springs and dampers. The values of the
masses, spring stiffness, and damping ratios are
presented in Table 1. The inputs to this system are
force actuators on the two masses and the outputs are
the velocities of the two masses.

The equations of motion for the system in Figure 3
can be written

m1 0

0 m2

 
  

 
  

˙ ̇ x 1
˙ ̇ x 2

 
 
 

 
 
 

+
c1 + c2 −c2

− c2 c2 +c3

 
  

 
  

˙ x 1
˙ x 2

 
 
 

 
 
 

+
k1+ k2 −k2

−k2 k2 + k3

 
  

 
  

x1
x2

 
 
 

 
 
 

=
f1
f2

 
 
 

 
 
 

(42)

y =
1 0

0 1
 
  

 
  

˙ x 1
˙ x 2

 
 
 

 
 
 

These equations of motion can be written in modal
coordinates and transformed into the frequency domain
as a basis for demonstrating the model validation
solutions described in the previous sections. The full

c1

c2

c3

k1

k2

m2

k3

m1 x1

x2

f1

f2

Figure 3 – Mass–spring–damper system.

Table 1 – Parameter values for mass–spring–damper system.

Mass (kg) Damping Ratio Stiffness (N/m)

m1 m2 c1 c2 c3 k1 k2 k3

0.45 0.45 0.40 0.40 0.40 150 150 150

order system will be used as the "true system" shown
in Figure 1. The nominal linear model is obtained by
truncating the second (higher frequency) mode from
the full order system. In this way the error between
the true system and the nominal system is nothing
more than the second mode of the full order system.
In addition, the real and imaginary parts of the first
mode eigenvalue are both decreased by 0.10 to
represent parameter errors in the nominal model.

     Model with Mixed Uncertainty

This example addresses the ability of the model
validation approach to generate an uncertainty model
associated with the combination of parameter errors and
unmodeled dynamics in the mass–spring–damper
system. Figure 4 depicts the uncertainty model
structure in block diagram form. Two uncertainty
blocks are considered – parameter uncertainty and
additive uncertainty.

The additive uncertainty structure consists of (1) a
full complex block ∆ a in which each element of the

2x2 matrix can take on any complex value such that
the norm of the matrix is less than unity, and (2) a
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single real scalar weight (i.e., Ωa = ωaI2 ) that is

chosen during the model validation solution.
The parameter uncertainty is modeled as repeated real

scalar perturbations. The weighting and uncertainty
matrices have the following structure.

Ωp =
ω1

1 0

0 1
 
  

 
  0

0 ω2
1 0

0 1
 
  

 
  

 

 

 
 
 
 

 

 

 
 
 
 

(43a)

∆p =
δ1

1 0

0 1
 
  

 
  0

0 δ2
1 0

0 1
 
  

 
  

 

 

 
 
 
 

 

 

 
 
 
 

(43b)

The first parameter δ1  is a perturbation of the real

part of the nominal model eigenvalue and the second
parameter δ2  is a perturbation of the imaginary part.
Each δi  is real valued and can have arbitrary values

such that ∆p ≤ 1. Each ωi  is also real but free to

be chosen during the optimization.
The solution of the model validation problem is

accomplished using the optimization described
previously over a range of frequencies. The input

vector is 1 −0.5[ ]T  at each frequency.‡ The objective

function is the sum squared value of the uncertainty
weights ωi , i = 1,2,...,τ . That is, the objective is to

  

min

φ,ψ, ωi

ω1
M

ωτ

2

.

P11 P12
P21 P22

∆p

u(s)

ξp(s)ηp(s)

Ωpξa(s) ηa(s)

Ωa∆a

y(s)~

Figure 4 – Uncertainty model structure.

                                                
‡ Laplace transform of 

1

−0.5
 
  

 
  δ (t) .

For this example, the model error can be completely
described by the chosen uncertainty structure. External
disturbances and measurement noise are not considered
and no weight is placed on the external disturbances.

Figure 5 depicts results from the model validation
solutions. The three optimal uncertainty weights (i.e.,
the additive uncertainty weight and the two real
parameter uncertainty weights) are plotted at each
frequency at which a solution was obtained.

Figure 6 depicts the result of using the optimal
uncertainty weights to generate a specific minimum
norm validating uncertainty at each frequency point.
The plot also shows several frequency responses of
particular interest. The solid line is the frequency
response of the "true system," the dashed line is the
frequency response of the nominal model, and the
dotted line is the frequency response associated with the
error dynamics (i.e., the difference between the true
system and the nominal model).

The circles are the result of solving for minimum
norm validating uncertainties and using them to
compute the frequency response of the uncertainty
model that corresponds to the error dynamics of the
system,

σ P21 I − ˜ ∆ P11[ ]−1 ˜ ∆ P12
 
 
 

 
 
 

.
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Figure 5 – Model validation uncertainty weights.
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Figure 6 – Model validation solution.
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The minimum norm validating uncertainties provide
a good approximation of the error dynamics. Therefore,
the model validation based uncertainty weights
accurately characterize the differences between the "true
system" and the nominal model. However, one might
also expect the real parameter uncertainty weights to be
0.1 at each frequency to reflect the actual parameter
error. But this is not the case. So why are the real
uncertainty weights so different from what might be
expected?

Note that the contribution of the parameter error to
the error dynamics is most significant in the
frequencies near the first mode while the contribution
of the unmodeled dynamics is most significant at
frequencies near the second mode. At frequencies near
the first mode (where the parameter uncertainty
dominates) the weights associated with the real
parameter uncertainty are close to the theoretically
exact value of 0.1. At frequencies away from the first
mode the weights associated with the real parameter
uncertainty are very small.

The additive uncertainty is better able to characterize
the uncertainty at frequencies away from the first mode
than the parameter uncertainty. That is, the additive
uncertainty permits validating signals for the system
with a smaller weight than does the real parameter
uncertainty. Recall that the solution approach seeks to
find the smallest normed weights that achieve
validation. The solution is not unique and a smaller
norm solution than the theoretically exact solution was
found to achieve model validation.

Also note that because the parameter error is
independent of frequency it should be the same constant
value at all frequencies. Therefore, one way to improve
the uncertainty model would be to solve the model
validation problem again and force the parameter
uncertainty weights to take on the maximum value
obtained during the mixed uncertainty solutions. The
sequential validation approach is an effective way to
solve this problem.

    Sequential Model Validation

The following example parallels the previous
example. However, in this case it is assumed that the
parameter uncertainty is known a priori. That is, the
parameter uncertainty matrix corresponds exactly to the
difference between the parameters in the true system
and the nominal model. Recall that for the mass-
spring-damper system there were two uncertain
parameters, the real and imaginary parts of the first
mode of the system, both of which were decreased in
the nominal model by 0.1 relative to their true values.

The known parameter uncertainty was specified to
be –

Ωp∆p =
0.1

1 0

0 1
 
  

 
  0

0 0.1
1 0

0 1
 
  

 
  

 

 

 
 
 
 

 

 

 
 
 
 

(44)

The additive uncertainty weights were then computed
from the optimization of β  to minimize the norm of

the additive uncertainty weight and satisfy the
constraint associated with its structure.

Figure 7 depicts results from the sequential
validation solutions. The three uncertainty weights
(i.e., the optimal additive uncertainty weight and the
two specified real parameter uncertainty weights) are
plotted as a function of frequency. Note that, in the
frequency range near the first mode, the additive
uncertain weight is smaller than the corresponding
uncertainty weight from the mixed uncertainty result
(see Figure 5). This is expected because the larger
parameter uncertainty is now better able to characterize
the errors.

The results of using the optimal uncertainty weights
to compute a minimum norm validating uncertainties
are shown in Figure 8. The plot shows the same
frequency responses shown in Figure 6. However, the
circles represent the uncertainty model dynamics
associated with the optimized additive uncertainty
weights with the real parameter weights specified. The
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Figure 7 – Sequential validation uncertainty weights.
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Figure 8 – Sequential validation frequency responses.
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minimum norm validating uncertainty provides a
better approximation of the error dynamics than in the
mixed uncertainty example (see Figure 6) as one
might expect.

Had the specified value of the parameter uncertainty
been in error, the solution of the sequential validation
problem could still have been accomplished. However,
the resulting additive uncertainty would have had to
describe the additional uncertainty in the assumed
model due to the remaining parameter errors. In fact,
this can be used as a means for selecting the best
parameter uncertainty if it is not known a priori.

The specified level of parameter uncertainty can be
varied over a range of potential values. The sequential
model validation method can then be used to compute
the additional additive uncertainty required to achieve
validation. A metric associated with the amount of
additional uncertainty required to achieve validation can
then be computed for each assumed level of parameter
uncertainty. The parameter uncertainty producing the
smallest additive uncertainty is the best choice for the
mixed parameter / additive uncertainty structure.

The results from an example of this approach for the
mixed uncertainty case is shown in Figure 9. The
metric for additive uncertainty is the area under the plot
of the additive uncertainty weight for a range of
specified parameter weights. The smallest area occurs
for parameter uncertainty of 0.1 which corresponds to
the least amount of additional additive uncertainty
required for validation and is equal to the actual
parameter error introduced into the nominal model.

Concluding Remarks

The solution of the model validation problem
developed by Lim and Giesy provides an excellent
foundation for generating uncertainty models for robust
control design applications. The extensions to the
Lim-Giesy approach developed herein provide an
ability to address some additional aspects of the
uncertainty modeling problem. The extended
optimization framework allows the determination of
the best (in a normed sense) combination of uncertain
elements (e.g., parameter and additive uncertainty) to
achieve validation.

The sequential solution approach provides a means
by which uncertainty structure can be addressed in the
context of the standard model validation solution
framework. This approach provides more control over
the way in which various uncertain elements can be
combined and does not require the engineer to rely
solely on the optimizer to find the 'best' solution.

The sequential solution approach has some added
benefit when there is more knowledge about the true
system  than just  input/output data.  For example, the
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Figure 9 –Parameter uncertainty selection with
sequential validation.

situation when certain parameter variations are
known. This knowledge can be included in the model
validation solution so that the additional uncertainty
model components will only have to characterize
those aspects of the system not otherwise described
by the known components. The result is less
conservative uncertainty models and thereby better
controller designs.
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